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ABSTRACT-Estimates of the mean vertical motions at the 
earth’s surface associated with airflow over topography 
are presented for Northern Hemisphere winter and are discussed. 

summer conditions, and the implications of these estimates 
for the theory of mean stationary waves in the atmosphere 

1. INTRODUCTION 

The vertical motions a t  the earth’s surface associated 
with horizontal airflow over the mountain ranges are of 
importance both for their direct effect on local climate (e.g., 
adiabai-ic warming and cooling with accompanying 
cloud and precipitation formatioa) and for their indirect 
effect on planetary climate by the forcing of stationary 
wave systems (e.g., Charney and Eliassen 1949). This 
vertical motion is given by 

dh ah 
a cos MA+’’ a wjM) = V, Vh=u, 

where V is the vector horizontal wind of which u is the 
eastward component and v is the northward CompoDent, 
the subscript s denotes the value a t  the anemometer 
level, the superscript M indicates topographic forcing, 
V is the horizontal del operator, h is the topographic 
height above sea level, a is the radius of the earth, A 
is longitude, and 4 is latitude. If we use a bar to denote a 
time average, we have 

(2) 
- w , : ~ )  = V, Vh. 

The field of mean vertical motion given by eq (2) can 
be converted to an equivalent field of mean surface “heat- 
ing” due to adiabatic ascent and descent. Denoting this 
quantity by aiMM’, we can write the relationship in the form 

- 
( C P r s p s d  W’ (3) p - 

where r is the “static stability,” - (aT/ap-RT/pc,), p 
is pressure, R is the gas constant, c p  is the specific heat 
at  constant pressure, T is temperature, p is density, and 
g is the acceleration of gravity. 

If we define an average around a latitude circle of a 
time-averaged variable, g, by 

and the “standing eddy” departure from this zonal 

average by 
t1=?-to1 

we can expand eq (2) in the form 

(4) 

The terms in brackets in eq (4) have been neglected in 
the forcing function in all theoretical studies of linear 
response of the atmosphere to  large-scale airflow over 
mountains. (See summary by Saltzman 1968.) In fact, 
the most detailed study of this kind made thus far (Sankar- 
Rao 1965) is based on the further approximation that 
uos is uniform with latitude, having the value observed 
for 45’N. It is worthwhile, therefore, to see to what 
extent this simplified form of the forced vertical motion 
at the surface approximates the more complete representa- 
tion given by eq (2). 

2. COMPUTATIONS 

For the purpose of comparing the complete and the 
simplified forms of the forced vertical motion equation a t  
the surface, we present an estimate for the Northern 
Hemisphere, computed for winter (October-March) and 
summer (April-September) wind conditions. The basic 
data used are the smoothed topographic heights of Berkof- 
sky and Bertoni (1955) and the mean observed winds of 
Buch (1954). Strictly speaking, the winds should be those 
measured at  the local station anemometer levels, but these 
winds are difficult to determine for the hemisphere. Hence, 
as a first approximation, we have used Buch’s 850-mb 
observed winds and in a few regions of high mountains 
have used his 700-mb winds. The results are shown in 
- figures 1 and 2 where we present the mapped values of 
wjM) for winter and summer, respectively, in units of IO-’ 
cm/s. [One can observe a fairly close relationship between 
the positive regions of U)iM) and the field of mean ilrecipi- 
tation (Trewartha 1968) ; this indicates that a good deal 
of the observed precipitation is connected with orographic 
uplifting.] 
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FIGURE 1.-Mean vertical motion (10-2 cm/s) at the surface, GjM), associated with airflow over smoothed Northern Hemisphere topography 
in winter. 

In figure 3 we show a, comparison of the profile of;,'"" 
along 40°N, as derived from figures 1 and 2, with that 
obtained from the simplified form 

sentative of latitudes other than 40"N. Thus, one would 
expect that the amplitudes and phases of the stationary 
planetary waves deduced from models based on eq (5) 
are - similarly in error. The discrepancy between;.? and 
wiM)* is almost entirely due to the V,,-field, the term in- 
volving oo, in eq (4) being negligibly small. 

3. A SUGGESTED APPROACH TO THE 
STATIONARY WAVE THEORY 

(5) 
ah - 

W Y '  *=uosa cos 

One can see that the amplitude of the forced vertical 
motion at  the surface is much exaggerated by the approxi- 
mate form [eq (5)], and in some places (e.g., 60°-75"E long.) 
the phase is seriously in error. This result is also repre- 

442 / Vol. 100, No. 6 / Monthly Weather Review 

In the linear theory of planetary standing waves in a 
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FIGURE 2.-Same as figure 1 for summer. 

uniform zonal current, the forcing function includes ther- 
mal (i.e., monsoonal) effects and transient eddy effects 
as well as the topographic effects being discussed here 
(c.f., Smagorinsky 1953, Saltzman 1963). The effects of 
lateral deflection of currents around mountain barriers 
have generally been neglected. For this linear theory, the 
stationary wave solution can therefore be considered as a 
superposition of mean winds due to thermal and transient 
eddy forcing, V i T ) ,  and due to  airflow over mountains, 
V:N) ; that is, VI = ViT)  + ViM). The existence of mountains 
also indirectly affects the thermal and transient eddy 
component through blocking effects on convective winds. 

In  light of the results in section 2, we suggest that the 
linear theory for VI be approached in two steps: 

1. Given the zonally symmetric mean state (e.g., uo), 
solve for VI due to  the thermal forcing and the part of 
the topographic forcing represented by eq (5). The forcing 
due to transient eddy convergence of heat can be assumed 
to be included in the thermal forcing function, and the 
forcing due to the transient eddy convergence of moment- 
um can be neglected (Saltzman 1963). 

accounts 
for a good deal of the variance of the mean surface wind 
pattern (Sankar-Rao and Saltzman 1969, Sankar-Rao 
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The thermal component of this solution, 
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FIGURE 3 . S u m m e r  and winter profiles a l p g  40°N of Gj‘) 
(solid curve) computed from eq (2) and of (dashed curve) 
computed from eq (5). The topographic profile, h(h), is shown 
at the bottom. 

(1970). On the other hand, the solution for VIw) 
corresponding to eq (5) shows maximum amplitude aloft 
with little amplitude near the surface (Sankar-Rao 1965). 
Thus the mean surface winds are generated primarily by 
the thermai part of the solution. 

2. Using the surface winds, VIS, generated by step (l), 
(Le., by the thermal forcing, essentially) compute the 
response to the forced surface vertical motions, 

w:Y’ =V,,*vh- 

This solution can now be added to that derived in step (1) .  
Of course, this combined solution would still suffer from 
the inadequacies of the linear approximation, the use of a 
uniform zonal current, and the other approximations 

commonly employed (Saltzman 1968), but we expect it 
to be better than that obtained by step (1) alone. 
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